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Abstract. A family of invariable-profile wavefunctions is constructed. The relations found describe both
transient and steady-state waves. The Gauss and Bessel-Gauss focused waves of order m can be obtained
from these steady-state waves via Bateman’s transformation.

PACS. 03.40.Kf Waves and wave propagation: general mathematical aspects

In this paper we discuss interrelations between wave-
functions having invariable transverse profiles and Brit-
tingham’s focus wave modes of Gauss and Bessel-Gauss
types [1,2]. We construct the explicit solutions of the
initial-value problem to the inhomogeneous and homoge-
neous wave equations in cylindric coordinate system by
using the specific transverse and angular distributions of
the source or the boundary condition on the plane that
starts at the fixed moment of time uniform motion along a
straight line. As a result, we obtain the family of wavefunc-
tions with invariable profiles, which describe both tran-
sient and steady-state wave processes. The latter enables
us to get the focus weave modes of Gauss and Bessel-
Gauss types of order m with the help of Bateman’s trans-
formation [3]. Here we apply the method elaborated by
Hillion for construction of nondispersive solutions to the
wave equations, in particular, the focus wave solution of
the Gauss type of order zero [4,5].

We shall construct solutions of the inhomogeneous
wave equation (

∇2 −
∂2

∂τ2

)
ψ =

4π

c
j (1)

where the source of the wave perturbation is

j = h(τ)δ(z − βτ)f(τ) exp(imϕ)R(ρ). (2)

Here ρ, ϕ, z and τ = ct are the space and time vari-
ables, c is the wavefront velocity (that is, for electromag-
netic waves the velocity of light), v = βc is the velocity
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of the source plane, β ∈ [0, 1], h(τ) is the Heaviside func-
tion, δ(z − βτ) is the Dirac function, f(τ) and R(ρ) are
continuous functions, and m is an integer.

The initial condition is

ψ ≡ 0 τ < 0. (3)

Representing the wavefunction ψ in the form

ψ = exp(imϕ)ψm(ρ, z, τ) (4)

we have from (1), (2), and (3)[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
−
m2

ρ2
+

∂2

∂z2
−

∂2

∂τ2

]
ψm =

4π

c
h(τ)δ(z − βτ)f(τ)R(ρ) (5)

ψm ≡ 0 τ < 0.

(i) Let us now suppose that R(ρ) = ρm, m ≥ 0. Then
we get the function ψm in the form

ψm = ρmv(z, τ) (6)

where v(z, τ) is the solution of the initial-value problem
to 1D wave equation(
∂2

∂z2
−

∂2

∂τ2

)
v =

4π

c
h(τ)δ(z − βτ)f(τ),

v ≡ 0 τ < 0. (7)



164 The European Physical Journal B

Then we have in the space-time domain z − βτ < 0

v = −
2π

c
√

1− β2

∫ τβ+zβ

0

dτ ′f

(
τ ′√

1− β2

)
(8)

where τβ = τ−βz√
1−β2

, zβ = z−βτ√
1−β2

, and find the function

ψ by using the relations (4) and (6). For finite ρ one can
get finite solutions of the homogeneous wave equation for
β ∈ [0, 1] which satisfies the same conditions on the plane
z−βτ = 0 by differentiating the found wavefunctions with
respect to the variable z. Summing up the results we can
write wavefunctions with the transverse profiles ρm as

ψ = ψ0m exp(imϕ)ρmv(τ + z), z − βτ < 0 (9)

where v is arbitrary function of the variable τ + z and
ψ0m is a constant. It should be noticed that the transient
wave process does not accompany formation of the above
waves.

(ii) We obtain the other type of wavefunctions with
invariable profiles when the transverse distribution of the
source (2) (or the boundary condition) is described by
the Bessel function of the first kind, R(ρ) = Jm(aρ), a is
constant. Then we find a solution of the problem (1), (2),
and (3) in the form

ψ = exp(imϕ)Jm(aρ)u(z, τ) (10)

where

u = −
2π

c
√

1− β2

∫ τβ+zβ

0

dτ ′f

(
τ ′√

1− β2

)
× J0

(
a
√

(τβ − τ ′)2 − z2
β

)
,

τβ + zβ > 0 (11)

is a solution of the initial-value problem of 1D telegraph
equation(
∂2

∂z2
−

∂2

∂τ2
− a2

)
u =

4π

c
h(τ)δ(z − βτ)f(τ),

u ≡ 0 τ < 0. (12)

In the case of time dependence of the source f(τ) =
exp(ikτ), k is constant, we represent expression (11) in
terms of Lommel’s functions of two variables Un(w, µ)
or Vn(w, µ) (see [6] for details). Let us suppose, for ex-
ample, that k > a > 0. Then one can write from (11)
for w±/µ < 1

u = −
2π

c
√

1− β2
√
k2
β − a

2

× [U1(w+, µ)− U1(w−, µ) + i (U2(w+, µ)− U2(w−, µ))]
(13)

where kβ = k/
√

1− β2, µ = a
√
τ2
β − z

2
β, w± =(

kβ ±
√
k2
β − a

2
)

(τβ + zβ) , while for w+/µ > 1

and w−/µ < 1

u=−
2π

c
√

1−β2
√
k2
β−a

2

× [V1(w+, µ)+iV0(w+, µ)−U1(w−, µ)−iU2(w−, µ)]

+
2π

c
√

1−β2
√
k2
β−a

2
exp

[
i

2

((
w++

µ2

w+

)
+π

)]
=ut+us.

(14)

The second term us, describing the steady-state solution,
is formed by means of terms Un(w+, z), n = 1, 2 only.
We can find finite solution of the homogeneous equation
by differentiating the expression (11) with respect to the
variable z [7]. Summing up the results, we obtain the sec-
ond type of the steady-state wavefunctions with invariable
profiles

ψ = ψ0m exp (imϕ) Jm(aρ) exp

[
i

2

((
kβ+

√
k2
β−a

2
)

(τβ+zβ)

+
(
kβ−

√
k2
β−a

2
)

(τβ−zβ)
)]

(15)

which exist in the domain

τβ

[
a2 −

(
kβ +

√
k2
β − a

2
)2
]

[
a2 +

(
kβ +

√
k2
β − a

2
)2
] < zβ < 0. (16)

When the source (the boundary) plane travels with the
velocity of light, we obtain from (15) and (16)

ψ(β = 1) = ψ0m exp(imϕ)Jm(aρ)

× exp

[
i

2

(
k (τ + z) +

a2

k
(τ − z)

)]
(17)

τ
(
a2 − k2

)
/
(
a2 + k2

)
< z < τ.

One can verify by substitution that wavefunctions (15)
and (17) with the complex parameters a and k satisfy the
homogeneous wave equation. Formation of the us-type so-
lution with the complex k and imaginary a is investigated
in details in [6].

We obtain wave modes akin to the Gauss and Bessel-
Gauss types from the wavefunctions having invariable pro-
files by means of Bateman’s transform [3]

ψ (ρ0, ϕ, z0, τ0)→

ψ̃ =
1

z0 − τ0
ψ

(
ρ0

z0 − τ0
, ϕ,

r2
0 − τ

2
0 − 1

2(z0 − τ0)
,
r2
0 − τ

2
0 + 1

2(z0 − τ0)

)
(18)

where ρ0 = ρλ, z0 = zλ, and τ0 = τλ are the dimensionless
variables, λ > 0 is constant, and r2

0 = ρ2
0 + z2

0 .
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We get the explicit expression for nondispersive wave-
functions of order m from (9) in the form

ψ̃m = ψ0m exp(imϕ)
ρm

λ(z − τ)m+1
v(z + τ +

ρ2

z − τ
),

z − τ 6= 0. (19)

Hence making v the exponential function one can obtain
the focus wave modes of the Gauss type. Also, wavefunc-
tion (9) has the invariable profile if v is an arbitrary func-
tion of the variable τ−z. In this case one finds the nondis-
persive wavefunctions applying transform (18) in which z
is replaced by −z.

Note that one can get solution (19) of the homogeneous
wave equation by separating variables ϕ and ρ/(τ−z) and

bearing in mind that the function 1
z−τ v(z+ τ + ρ2

z−τ ) is an
axisymmetric solution of the wave equation.

The explicit relations for the wavefunctions which are
akin to the Bessel-Gauss focus wave modes of order m
may be obtained from (15) or (17). Using transform (18)
we get from expression (17)

ψ̃m = ψ0m exp(imϕ)
1

λ(z − τ)
Jm

(
aρ

λ(z − τ)

)

× exp

[
i

2
k

(
z + τ +

ρ2 + (a/kλ)2

z − τ

)]
z − τ 6= 0.

(20)

Replacing z, τ , k, and a2/k by zβ, τβ , kβ +
√
k2
β − a

2, and

kβ −
√
k2
β − a

2 we have wavefunction constructed from

(15) by the same method.
Supposing that ψ0m ∼ 1/am and taking the limit

|a| → 0 we obtain wavefunction (19) where v =

exp
[
ik
(
z + τ + ρ2

z−τ

)]
.

In the general case of the orthogonal cylindric coordi-
nates x1, x2, z, one can separate the transverse variables
x1, x2 representing the solution of the wave equation in
the form ψ = X(x1, x2)Z(z, τ) where the function Z(z, τ)
is the solution of the telegraph equation of the type (11),
(14). Then using Bateman’s transform it is possible, in

principle, to obtain the wavefunction ψ̃ that contains the

factor 1
z−τ exp

[
α1

(
z + τ − ρ2+α2

2

z−τ

)]
(here constants α1,2

should be in agreement with the transverse distribution
of the source or the boundary conditions), which is char-
acteristic for the focused waves. However, this possibility
requires an individual investigation.

Note that obtained solutions of the scalar wave equa-
tion can be applied to the description of the electromag-
netic waves. It is clear that the Cartesian components
of the electric field strength and the magnetic induction
vectors satisfy the wave equation. In some cases electro-
magnetic field vectors are expressed in terms of scalar
functions with the help of the electric and magnetic one-
component Hertz vectors, which in cylindric coordinates
have the form Π = ezΠ and Π∗ = ezΠ

∗ where functions
Π and Π∗ are solutions of the scalar wave equation [8].
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